手机浏览器扫描二维码访问
PSI为分类数据,取1表示接受了新的教学方法指导,0表示没有接受新的教学方法指导;GPA表示学生平均积分点,为数值型数据;TUC表示以往的学生成绩,为数值型数据。假如,想了解GPA、TUC和PSI对学生成绩是否有影响,以及预测学生学习成绩是否会提高,你会选择下述用哪个。
模型?为什么?(A.线性回归B.逻辑回归C.聚类D.关联规则挖掘)你的选择:逻辑回归你的解释:逻辑回归是一种广泛应用于分类问题的机器学习算法。在这个情况下,我们的目标是预测学习成绩是否提高,这是一个二分类问题,即学习成绩提高或不提高。逻辑回归可以用来建立一个概率模型,根据给定的特征值(GPA、TUC和PSI),计算出学生成绩提高的概率。逻辑回归模型的输出是一个概率值,表示学生成绩提高的可能性。这使得我们能够根据学生的特征值进行预测,并判断他们学习成绩是否会提高。此外,逻辑回归还可以提供每个特征的权重系数,帮助我们理解各个特征对学生成绩的影响程度。线性回归(A.线性回归)也可用于这个问题,但它更适用于连续数值型的目标变量的预测,而不是二分类问题。聚类(C.聚类)是无监督学习方法,不适用于这个情况。关联规则挖掘(D.关联规则挖掘)通常用于发现数据中的频繁项集和关联关系,不太适合用于预测学生成绩的问题。因此,在给出的选项中,选择使用逻辑回归模型(B.逻辑回归)是合适的,它可以用于预测学生学习成绩是否会提高,并了解GPA、TUC和PSI对学生成绩的影响程度。4、K-means算法在给定数据集上运行第一次后的结果为,数据集分为三个簇:cluster1:(1,3)、(2,4);cluster2:(4,0)、(2,0);cluster3:(0,3)、(0,5)。样本(0,3)和cluster2的质心之间的曼哈顿距离为:你的答案:5你的计算过程:Cluster2的质心:(4+2)2=3;0样本的坐标是(0,3),Cluster2的质心是(3,0)。将给定的点代入公式,我们有:d=|3-0|+|0-3|=|3|+|-3|=3+3=6。
。。
1Bagging(包装法):优势:Bagging通过随机有放回地对训练数据进行采样,每个基分类器独立训练,然后通过投票或平均等方式进行集成,能够有效降低过拟合风险,提高模型的泛化能力。它尤其适合在高方差的模型上使用,如决策树等。局限性:对于高偏差的模型来说,Bagging可能无法显着改善模型性能。此外,由于基分类器的独立性,Bagging不容易处理存在较强相关性的数据,比如时间序列数据。使用场景:Bagging通常用于分类和回归问题,在数据集较大且噪声相对较小的情况下表现良好。2Boosting(提升法):优势:Boosting通过迭代地训练一系列基分类器,并根据前一个分类器的性能对样本权重进行调整,使得基分类器逐渐关注于难以分类的样本。它能够有效提高模型的精度和泛化能力,尤其适合解决高偏差的问题。局限性:Boosting对噪声和异常值比较敏感,容易导致过拟合。此外,由于基分类器之间存在依赖关系,Boosting的训练过程相对较慢。使用场景:Boosting通常用于分类问题,在需要处理高偏差或低准确度的场景下表现出色。3Stag(堆叠法):优势:Stag通过在多个基分类器上构建一个元分类器来进行集成,可以充分利用各个基分类器的预测结果,进一步提升性能。通过允许使用更复杂的元分类器,Stag具有更强大的表达能力。局限性:Stag的主要挑战在于选择合适的元特征以及使用交叉验证避免数据泄露。此外,Stag通常需要更多的计算资源和时间来进行模型训练和预测。使用场景:Stag适用于各类机器学习问题,并且在数据集相对较大、前期已经进行了一定特征工程的情况下效果较好。
让你当好圣孙,你养一群女妖?  不当舔狗后,校花哭问为什么!  我有个死要钱的系统  苟在修仙世界当反派  重回八零,俏媳妇改造废物老公  终于联系上地球,你说不要回答?  红楼之剑天外来  回到霍格沃茨的古代巫师  斗罗:封号琴魔,这个杀手有点冷  综漫:从杀手皇后开始  仙子不想理你  快穿:病美人仙君又拿白月光剧本  归零:云海梦境,山海有灵  除了我,全家都穿越了  四合院之罪恶克星  推理虽然有用但真的很令人讨厌  刚成仙神,子孙求我登基  末世:战姬指挥官  我这样进球,会伤害到你吗?  带着原神祈愿系统穿越到诡异世界  
都市至尊神婿简介emspemsp因为神秘诅咒,纪家世世代代以入赘为生,为救心爱的女人,纪宇毅然放弃五百亿的继承,又因祸得福,意外获得祖传中医绝学摸骨真经,从此踏上悬壶济世,惩恶扬善的强者之路。PO18小说网(mpo18xswcom)提...
血火河山简介emspemsp关于血火河山起点第四编辑组签约作品我不要公道和公正,我需要的是铁血和刺刀!我要浇铸出中华民族的钢铁脊梁,我要打造一个铁血中华!这就是我,一个穿越到晚清者的自白!本书与现实无关,纯属跟风之...
穿越到了一个玄幻世界,然而具备先进思想的修行者们刚刚以一场旷日持久的战争结束了早已步入黄昏的旧修行时代。皇权压迫的时代没有了,修行者高高在上的时代消失了,这是一个修行普及充满活力的崭新...
于此沉沦简介emspemsp于此沉沦是恶犬幽幽的经典其他类型类作品,于此沉沦主要讲述了为了延续父亲大人对死去女儿的爱,她作为那个女儿的替身被带了回恶犬幽幽最新鼎力大作,年度必看其他类型。禁忌书屋提供于此沉沦最新章节全...
有钱了不起啊,丑八怪!她怒瞪着眼前这个破了相的老男人,恨不得将他拆骨入腹。可是,接下来的日子令她始料未及如果您喜欢总裁欠教育,别忘记分享给朋友...
重生花样年华,玩转市井豪门,携手逆袭人生,共揽一世风云!如果您喜欢八零军嫂有点苏,别忘记分享给朋友...