手机浏览器扫描二维码访问
交规范化方法、规范正交基、正交矩阵及其性质.
考试要求
1.理解n维向量、向量的线性组合与线性表示的概念.
2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判
别法.
3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.
5.了解n维向量空间、子空间、基底、维数、坐标等概念.
6.了解基变换和坐标变换公式,会求过渡矩阵.
7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
8.了解规范正交基、正交矩阵的概念以及它们的性质.
四、线性方程组
线性方程组的克拉默(Cramer)法则、齐次线性方程组有非零解的充分必要条件、非齐次线
性方程组有解的充分必要条件、线性方程组解的性质和解的结构、齐次线性方程组的基础解
系和通解、解空间、非齐次线性方程组的通解.
考试要求
l.会用克拉默法则.
2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。
3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系
和通解的求法.
4.理解非齐次线性方程组解的结构及通解的概念.
5.掌握用初等行变换求解线性方程组的方法.
五、矩阵的特征值和特征向量
矩阵的特征值和特征向量的概念及性质、相似变换及相似矩阵的概念及性质、矩阵可相似对
角化的充分必要条件及相似对角矩阵、实对称矩阵的特征值、特征向量及其相似对角矩阵.
考试要求
1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.
2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对
角矩阵的方法.
3.掌握实对称矩阵的特征值和特征向量的性质.
六、二次型
二次型及其矩阵表示、合同变换与合同矩阵、二次型的秩、惯性定理、二次型的标准形和规
本小章还未完,请点击下一页继续阅读后面精彩内容!
范形、用正交变换和配方法化二次型为标准形、二次型及其矩阵的正定性.
考试要求
除了我,全家都穿越了  仙子不想理你  快穿:病美人仙君又拿白月光剧本  让你当好圣孙,你养一群女妖?  综漫:从杀手皇后开始  不当舔狗后,校花哭问为什么!  终于联系上地球,你说不要回答?  斗罗:封号琴魔,这个杀手有点冷  归零:云海梦境,山海有灵  回到霍格沃茨的古代巫师  刚成仙神,子孙求我登基  带着原神祈愿系统穿越到诡异世界  我有个死要钱的系统  苟在修仙世界当反派  红楼之剑天外来  四合院之罪恶克星  末世:战姬指挥官  我这样进球,会伤害到你吗?  重回八零,俏媳妇改造废物老公  推理虽然有用但真的很令人讨厌  
都市至尊神婿简介emspemsp因为神秘诅咒,纪家世世代代以入赘为生,为救心爱的女人,纪宇毅然放弃五百亿的继承,又因祸得福,意外获得祖传中医绝学摸骨真经,从此踏上悬壶济世,惩恶扬善的强者之路。PO18小说网(mpo18xswcom)提...
血火河山简介emspemsp关于血火河山起点第四编辑组签约作品我不要公道和公正,我需要的是铁血和刺刀!我要浇铸出中华民族的钢铁脊梁,我要打造一个铁血中华!这就是我,一个穿越到晚清者的自白!本书与现实无关,纯属跟风之...
穿越到了一个玄幻世界,然而具备先进思想的修行者们刚刚以一场旷日持久的战争结束了早已步入黄昏的旧修行时代。皇权压迫的时代没有了,修行者高高在上的时代消失了,这是一个修行普及充满活力的崭新...
于此沉沦简介emspemsp于此沉沦是恶犬幽幽的经典其他类型类作品,于此沉沦主要讲述了为了延续父亲大人对死去女儿的爱,她作为那个女儿的替身被带了回恶犬幽幽最新鼎力大作,年度必看其他类型。禁忌书屋提供于此沉沦最新章节全...
有钱了不起啊,丑八怪!她怒瞪着眼前这个破了相的老男人,恨不得将他拆骨入腹。可是,接下来的日子令她始料未及如果您喜欢总裁欠教育,别忘记分享给朋友...
重生花样年华,玩转市井豪门,携手逆袭人生,共揽一世风云!如果您喜欢八零军嫂有点苏,别忘记分享给朋友...